
Intro To Rust

Danilo Bargen (@dbrgn), Raphael Nestler (@rnestler)
June 11, 2016

Coredump Rapperswil

Outline

1. What is Rust?

2. Getting Started

3. What is Type Safety?

4. Reading Rust

5. Memory Safety in Rust

6. Multithreaded Programming

7. Rust Community

What is Rust?

What is Rust?

«Rust is a systems programming language
that runs blazingly fast, prevents nearly all segfaults,
and guarantees thread safety.»
— www.rust-lang.org

1/71

What’s wrong with systems languages?

• It’s difficult to write secure code.
• It’s very difficult to write multithreaded code.

These are the problems Rust was made to address.

2/71

Quick Facts about Rust

(As of June 2016)

• Started by Mozilla employee Graydon Hoare
• First announced by Mozilla in 2010
• Community driven development
• First stable release: 1.0 in May 2015
• Latest stable release: 1.9
• More than 54’000 commits on Github
• Largest well-known project written in Rust: Servo1

1https://servo.org/

3/71

https://servo.org/

Features

• Zero-cost abstractions
• Move semantics
• Guaranteed memory safety
• Threads without data races
• Trait based generics
• Pattern matching
• Type inference
• Minimal runtime, no GC
• Efficient C bindings

4/71

Getting Started

Getting Started

Installing Rust

Rustup.rs

«rustup is an installer for
the systems programming language Rust»
— www.rustup.rs

5/71

Rustup.rs

• Makes it easy to install different Rust versions
• Successor of multirust
• Written in Rust itself

• Installing is easy:
$ curl https://sh.rustup.rs -sSf | sh
Obviously you shouldn’t do that ;)

• Alternatively you can use https://play.rust-lang.org/

6/71

https://play.rust-lang.org/

Rustup.rs

• Makes it easy to install different Rust versions
• Successor of multirust
• Written in Rust itself
• Installing is easy:
$ curl https://sh.rustup.rs -sSf | sh

Obviously you shouldn’t do that ;)
• Alternatively you can use https://play.rust-lang.org/

6/71

https://play.rust-lang.org/

Rustup.rs

• Makes it easy to install different Rust versions
• Successor of multirust
• Written in Rust itself
• Installing is easy:
$ curl https://sh.rustup.rs -sSf | sh
Obviously you shouldn’t do that ;)

• Alternatively you can use https://play.rust-lang.org/

6/71

https://play.rust-lang.org/

Getting Started

Cargo, Rust’s Package Manager

Cargo

• Project and package manager
• Fetches and builds your project’s dependencies
• Invokes rustc or another build tool with the correct parameters to build your
project

7/71

Cargo – Create a New Project

$ cargo new hello_world --bin
$ cd hello_world
$ tree
.
├── Cargo.toml
└── src

└── main.rs

1 directory, 2 files

8/71

Cargo – Compile and Run

$ cargo build
Compiling hello_world v0.1.0 (file:///path/to/project/hello_world)

$./target/debug/hello_world
Hello, world!

$ cargo run
Compiling hello_world v0.1.0 (file:///path/to/project/hello_world)
Running `target/debug/hello_world`

Hello, world!

9/71

Cargo – Dependencies

• Cargo generated a manifest for us:
[package]
name = "hello_world"
version = "0.1.0"
authors = ["Your Name <you@example.com>"]

• To add a dependency (from https://crates.io or github) we add it to
the manifest:
[dependencies]
time = "0.1"

• Cargo uses semantic versioning2 → we get the latest 0.1.x version

2http://semver.org/

10/71

https://crates.io
http://semver.org/

Cargo – Dependencies

$ cargo build
Updating registry `https://github.com/rust-lang/crates.io-index`

Downloading winapi v0.2.7
Compiling winapi v0.2.7
Compiling winapi-build v0.1.1
Compiling libc v0.2.11
Compiling kernel32-sys v0.2.2
Compiling time v0.1.35
Compiling hello_world v0.1.0 (file:///path/to/project/hello_world)

11/71

Cargo – Testing

Rust has integrated unit testing3

#[test]
fn it_works() {

assert_eq!(1, 1);
}

#[test]
fn it_fails() {

assert_eq!(1, 2);
}

3https://doc.rust-lang.org/book/testing.html

12/71

https://doc.rust-lang.org/book/testing.html

Cargo – Testing

$ cargo test

running 2 tests
test it_fails ... FAILED
test it_works ... ok

...

test result: FAILED. 1 passed; 1 failed; 0 ignored; 0 measured

13/71

What is Type Safety?

A C Program

int main(int argc, char **argv) {
unsigned long a[1];
a[3] = 0x7ffff7b36cebUL;
return 0;

}

According to C99, undefined behavior. Output:

undef: Error: .netrc file is readable by others.
undef: Remove password or make file unreadable by others.

14/71

A C Program

int main(int argc, char **argv) {
unsigned long a[1];
a[3] = 0x7ffff7b36cebUL;
return 0;

}

According to C99, undefined behavior. Output:

undef: Error: .netrc file is readable by others.
undef: Remove password or make file unreadable by others.

14/71

Definitions

• If a program has been written so that no possible execution can exhibit
undefined behavior, we say that program is well defined.

• If a language’s type system ensures that every program is well defined, we
say that language is type safe.

15/71

Type Safe Languages

• C and C++ are not type safe.
• Python is type safe:
>>> a = [0]
>>> a[3] = 0x7ffff7b36ceb
Traceback (most recent call last):
File "", line 1, in <module>
IndexError: list assignment index out of range
>>>

• Java, JavaScript, Ruby, and Haskell are also type safe.

16/71

It’s Ironic.

• C and C++ are not type safe.
• Yet they are being used to implement the foundations of a system.
• Rust tries to resolve that tension

17/71

Reading Rust

Example 1

fn gcd(mut n: u64, mut m: u64) -> u64 {
assert!(n != 0 && m != 0);
while m != 0 {

if m < n {
let t = m; m = n; n = t;

}
m = m % n;

}
n

}

18/71

Example 1

fn gcd(mut n: u64, mut m: u64) -> u64 {
assert!(n != 0 && m != 0);
while m != 0 {

if m < n {
let t = m; m = n; n = t;

}
m = m % n;

}
n

}

19/71

Example 1

fn gcd(mut n: u64, mut m: u64) -> u64 {
assert!(n != 0 && m != 0);
while m != 0 {

if m < n {
let t = m; m = n; n = t;

}
m = m % n;

}
n

}

20/71

Example 1

fn gcd(mut n: u64, mut m: u64) -> u64 {
assert!(n != 0 && m != 0);
while m != 0 {

if m < n {
let t = m; m = n; n = t;

}
m = m % n;

}
n

}

21/71

Example 1

fn gcd(mut n: u64, mut m: u64) -> u64 {
assert!(n != 0 && m != 0);
while m != 0 {

if m < n {
let t = m; m = n; n = t;

}
m = m % n;

}
n

}

22/71

Example 1

fn gcd(mut n: u64, mut m: u64) -> u64 {
assert!(n != 0 && m != 0);
while m != 0 {

if m < n {
let t = m; m = n; n = t;

}
m = m % n;

}
n

}

23/71

Example 1

fn gcd(mut n: u64, mut m: u64) -> u64 {
assert!(n != 0 && m != 0);
while m != 0 {

if m < n {
let t = m; m = n; n = t;

}
m = m % n;

}
n

}

24/71

Example 1

fn gcd(mut n: u64, mut m: u64) -> u64 {
assert!(n != 0 && m != 0);
while m != 0 {

if m < n {
let t = m; m = n; n = t;

}
m = m % n;

}
n

}

25/71

Example 2: Generics

fn min<T: Ord>(a: T, b: T) -> T {
if a <= b { a } else { b }

}

...

min(10i8, 20) == 10; // T is i8
min(10, 20u32) == 10; // T is u32
min("abc", "xyz") == "abc"; // Strings are Ord

min(10i32, "xyz"); // error: mismatched types

26/71

Example 2: Generics

fn min<T: Ord>(a: T, b: T) -> T {
if a <= b { a } else { b }

}

...

min(10i8, 20) == 10; // T is i8
min(10, 20u32) == 10; // T is u32
min("abc", "xyz") == "abc"; // Strings are Ord

min(10i32, "xyz"); // error: mismatched types

26/71

Example 3: Generic Types

struct Range<Idx> {
start: Idx,
end: Idx,

}

...

Range { start: 200, end: 800 } // OK
Range { start: 1.3, end: 4.7 } // Also OK

27/71

Example 3: Generic Types

struct Range<Idx> {
start: Idx,
end: Idx,

}

...

Range { start: 200, end: 800 } // OK
Range { start: 1.3, end: 4.7 } // Also OK

27/71

Example 4: Enumerations

enum Option<T> {
Some(T),
None

}

28/71

Example 5: Application of Option<T>

fn safe_div(n: i32, d: i32) -> Option<i32> {
if d == 0 {

return None;
}
Some(n / d)

}

29/71

Example 6: Matching an Option

match safe_div(num, denom) {
None => println!("No quotient."),
Some(v) => println!("Quotient is {}.", v)

}

30/71

Example 7: Traits

trait HasArea {
fn area(&self) -> f64;

}

31/71

Example 8: Trait Implementation

struct Circle {
x: f64,
y: f64,
radius: f64,

}

impl HasArea for Circle {
fn area(&self) -> f64 {

consts::PI * (self.radius * self.radius)
}

}

32/71

Example 9: Default Methods

trait Validatable {
fn is_valid(&self) -> bool;
fn is_invalid(&self) -> bool {

!self.is_valid()
}

}

33/71

Example 10: Trait Composition

trait Foo {
fn foo(&self);

}

trait FooBar : Foo {
fn foobar(&self);

}

34/71

Memory Safety in Rust

Three Key Promises

To guarantee memory safety, Rust gives us three key promises:

• No null pointer dereferences

• There are no null pointers in safe Rust
• For error handling and control flow, Option and Result types are used.

• No dangling pointers
• The concepts of ”ownership”, ”borrowing” and ”lifetimes” prevent the use of
uninitialized or freed pointers

• No buffer overruns
• There’s no pointer arithmetic in safe Rust
• Arrays in Rust are not just pointers
• There are runtime bounds checks for indexing
• But most stdlib functions use iterators, which are checked at compile time

35/71

Three Key Promises

To guarantee memory safety, Rust gives us three key promises:

• No null pointer dereferences
• There are no null pointers in safe Rust
• For error handling and control flow, Option and Result types are used.

• No dangling pointers
• The concepts of ”ownership”, ”borrowing” and ”lifetimes” prevent the use of
uninitialized or freed pointers

• No buffer overruns
• There’s no pointer arithmetic in safe Rust
• Arrays in Rust are not just pointers
• There are runtime bounds checks for indexing
• But most stdlib functions use iterators, which are checked at compile time

35/71

Three Key Promises

To guarantee memory safety, Rust gives us three key promises:

• No null pointer dereferences
• There are no null pointers in safe Rust
• For error handling and control flow, Option and Result types are used.

• No dangling pointers

• The concepts of ”ownership”, ”borrowing” and ”lifetimes” prevent the use of
uninitialized or freed pointers

• No buffer overruns
• There’s no pointer arithmetic in safe Rust
• Arrays in Rust are not just pointers
• There are runtime bounds checks for indexing
• But most stdlib functions use iterators, which are checked at compile time

35/71

Three Key Promises

To guarantee memory safety, Rust gives us three key promises:

• No null pointer dereferences
• There are no null pointers in safe Rust
• For error handling and control flow, Option and Result types are used.

• No dangling pointers
• The concepts of ”ownership”, ”borrowing” and ”lifetimes” prevent the use of
uninitialized or freed pointers

• No buffer overruns
• There’s no pointer arithmetic in safe Rust
• Arrays in Rust are not just pointers
• There are runtime bounds checks for indexing
• But most stdlib functions use iterators, which are checked at compile time

35/71

Three Key Promises

To guarantee memory safety, Rust gives us three key promises:

• No null pointer dereferences
• There are no null pointers in safe Rust
• For error handling and control flow, Option and Result types are used.

• No dangling pointers
• The concepts of ”ownership”, ”borrowing” and ”lifetimes” prevent the use of
uninitialized or freed pointers

• No buffer overruns

• There’s no pointer arithmetic in safe Rust
• Arrays in Rust are not just pointers
• There are runtime bounds checks for indexing
• But most stdlib functions use iterators, which are checked at compile time

35/71

Three Key Promises

To guarantee memory safety, Rust gives us three key promises:

• No null pointer dereferences
• There are no null pointers in safe Rust
• For error handling and control flow, Option and Result types are used.

• No dangling pointers
• The concepts of ”ownership”, ”borrowing” and ”lifetimes” prevent the use of
uninitialized or freed pointers

• No buffer overruns
• There’s no pointer arithmetic in safe Rust
• Arrays in Rust are not just pointers
• There are runtime bounds checks for indexing
• But most stdlib functions use iterators, which are checked at compile time

35/71

Memory Safety in Rust

Promise 1: No null pointer dereferences

Promise 1: No null pointer dereferences

Null pointers are useful.
They can indicate the absence of optional information.
They can indicate failures.

But they can introduce severe bugs.

Rust separates the concept of a pointer from the concept of an
optional or error value.
Optional values are handled by Option<T>.
Error values are handled by Result<T, E>.
Many helpful tools to do error handling.

36/71

Promise 1: No null pointer dereferences

Null pointers are useful.
They can indicate the absence of optional information.
They can indicate failures.
But they can introduce severe bugs.

Rust separates the concept of a pointer from the concept of an
optional or error value.
Optional values are handled by Option<T>.
Error values are handled by Result<T, E>.
Many helpful tools to do error handling.

36/71

Promise 1: No null pointer dereferences

Null pointers are useful.
They can indicate the absence of optional information.
They can indicate failures.
But they can introduce severe bugs.

Rust separates the concept of a pointer from the concept of an
optional or error value.
Optional values are handled by Option<T>.
Error values are handled by Result<T, E>.
Many helpful tools to do error handling.

36/71

You already saw Option<T>

fn safe_div(n: i32, d: i32) -> Option<i32> {
if d == 0 {

return None;
}
Some(n / d)

}

But what if you want to return an error, not just None?

37/71

You already saw Option<T>

fn safe_div(n: i32, d: i32) -> Option<i32> {
if d == 0 {

return None;
}
Some(n / d)

}

But what if you want to return an error, not just None?

37/71

There’s also Result<T, E>

enum Result<T, E> {
Ok(T),
Err(E)

}

38/71

How to use Results:

enum Error {
DivisionByZero,

}

fn safe_div(n: i32, d: i32) -> Result<i32, Error> {
if d == 0 {

return Err(Error::DivisionByZero);
}
Ok(n / d)

}

It’s good practice to define your own error types instead of using strings.

39/71

How to use Results:

enum Error {
DivisionByZero,

}

fn safe_div(n: i32, d: i32) -> Result<i32, Error> {
if d == 0 {

return Err(Error::DivisionByZero);
}
Ok(n / d)

}

It’s good practice to define your own error types instead of using strings.

39/71

But Result can get tedious...

fn do_calc() -> Result<i32, String> {
let a = match do_subcalc1() {

Ok(val) => val,
Err(msg) => return Err(msg),

}
let b = match do_subcalc2() {

Ok(val) => val,
Err(msg) => return Err(msg),

}
Ok(a + b)

}

40/71

Ergonomic error handling with the try! macro

fn do_calc() -> Result<i32, String> {
let a = try!(do_subcalc1());
let b = try!(do_subcalc2());
Ok(a + b)

}

Note: Error signature must match!

41/71

Ergonomic error handling with the try! macro

fn do_calc() -> Result<i32, String> {
let a = try!(do_subcalc1());
let b = try!(do_subcalc2());
Ok(a + b)

}

Note: Error signature must match!

41/71

Mapping Errors

What if the signature does not match?

Then we can use map_err():

fn do_subcalc() -> Result<i32, String> { ... }
fn do_calc() -> Result<i32, Error> {

let res = do_subcalc();
let mapped = res.map_err(|msg| {

println!("Error: {}", msg);
Error::CalcFailed

});
let val = try!(mapped);
Ok(val + 1)

}

42/71

Mapping Errors

What if the signature does not match? Then we can use map_err():

fn do_subcalc() -> Result<i32, String> { ... }
fn do_calc() -> Result<i32, Error> {

let res = do_subcalc();
let mapped = res.map_err(|msg| {

println!("Error: {}", msg);
Error::CalcFailed

});
let val = try!(mapped);
Ok(val + 1)

}

42/71

Mapping Errors: A closer look

let mapped = res.map_err(|msg| Error::CalcFailed);

...is the same as...

let mapped = match res {
Ok(val) => Ok(val),
Err(msg) => Err(Error::CalcFailed),

}

43/71

Memory Safety in Rust

Promise 2: No dangling pointers

Promise 2: No dangling pointers

• Rust programs never try to access a heap-allocated value after it has been
freed.

• By default, no garbage collection or reference counting involved!
• Everything is enforced at compile-time.

44/71

Three Rules

Rule 1
Every value has a single owner at any given time.

Rule 2
You can borrow a reference to a value, so long as the reference doesn’t outlive
the value.

Rule 3
You can only modify a value when you have exclusive access to it.

45/71

Three Rules

Rule 1
Every value has a single owner at any given time.

Rule 2
You can borrow a reference to a value, so long as the reference doesn’t outlive
the value.

Rule 3
You can only modify a value when you have exclusive access to it.

45/71

Three Rules

Rule 1
Every value has a single owner at any given time.

Rule 2
You can borrow a reference to a value, so long as the reference doesn’t outlive
the value.

Rule 3
You can only modify a value when you have exclusive access to it.

45/71

Ownership

• Variable bindings own their values
• A struct owns its fields
• An enum owns its values
• Every heap-allocated value has a single pointer that owns it
• All values are dropped when their owner is dropped

46/71

Ownership: Scoping

If a value goes out of scope, the corresponding memory is automatically freed.

{
let s = "Chuchichästli".to_string();

} // s goes out of scope, memory is freed

47/71

Ownership: Move Semantics

Ownership is moved by default.

let s = "Chuchichästli".to_string();

// t1 takes ownership from s
let t1 = s;

// compile-time error: use of moved value s
let t2 = s;

48/71

Ownership: Opt-in Implicit Copy Semantics

Types that implement the Copy marker trait (more about traits later) are copied
instead of moved. The stdlib implements Copy for all primitive types.

let pi = 3.1415926f32;
let foo = pi;
let bar = pi; // This is fine!

49/71

Ownership: Opt-in Explicit Copy Semantics

If you prefer copies to be explicit, you can implement the Clone trait instead.

let s = "Chuchichästli".to_string();
let t1 = s.clone();
let t2 = s.clone();

50/71

Ownership: Deriving Copy / Clone

The compiler can automatically derive implementations of Copy and Clone for
us.

#[derive(Copy, Clone)]
struct Color {

r: u8,
g: u8,
b: u8

}

51/71

Ownership: Function Parameters

But what about this?

fn print_loud(text: String) { println!("{}!!!!!", text); }
let s = "Hello, Cosin".to_string();
print_loud(s);
println!("{}", s);

error: use of moved value: `s`
println!(“{}”, s);

^
note: `s` moved here because it has type `collections::string::String`,
which is non-copyable
print_loud(s);

^

52/71

Ownership: Function Parameters

But what about this?

fn print_loud(text: String) { println!("{}!!!!!", text); }
let s = "Hello, Cosin".to_string();
print_loud(s);
println!("{}", s);

error: use of moved value: `s`
println!(“{}”, s);

^
note: `s` moved here because it has type `collections::string::String`,
which is non-copyable
print_loud(s);

^

52/71

Borrowing

Instead of moving a value, it can also be borrowed.

fn print_loud(text: &String) { println!("{}!!!!!", text); }
let s = "Hello, Cosin".to_string();
print_loud(&s);
println!("Original value was {}", s);

Many functions can borrow at the same time, because they cannot modify.

53/71

Mutable Borrowing

If you need exclusive (=write) access, you can use mutable borrows.

fn make_loud(text: &mut String) { text.push_str("!!!!!"); };
let mut s = "Hello, Cosin".to_string();
make_loud(&mut s);
println!("New value is {}", s);

While borrow a mutable reference to a value, that refrence is the only way to
access that value at all.

54/71

Borrowing prevents moving

While borrowed, a move must be prevented. Otherwise you might end up with a
dangling pointer.

let x = String::new();
let borrow = &x;
let y = x;

error: cannot move out of `x` because it is borrowed [E0505]
let y = x;

^
note: borrow of `x` occurs here

let borrow = &x;
^

55/71

Lifetimes

What’s the problem here?

let borrow;
let x = String::new();
borrow = &x;

error: `x` does not live long enough
borrow = &x;

^

56/71

Lifetimes

The lifetime of the borrow is longer than the lifetime of ‘x‘.

let borrow;
let x = String::new();
borrow = &x;

This can also be visualized differently:

{
let borrow;
{

let x = String::new();
borrow = &x;

}
}

Using lifetime checking, the compiler guarantees that there are no dangling
pointers.

57/71

Memory Safety in Rust

Promise 3: No buffer overruns

No buffer overruns: Recap

• There’s no pointer arithmetic in safe Rust
• Arrays in Rust are not just pointers
• There are runtime bounds checks for indexing
• But most stdlib functions use iterators, which are checked at compile time

58/71

Multithreaded Programming

We’ll make this short

• The Rust compiler does not know about concurrency
• Everything works based on the three rules4

• We’ll step through an example

4Slide 45

59/71

Threads

let t1 = std::thread::spawn(|| { return 23; });
let t2 = std::thread::spawn(|| { return 19; });

let v1 = t1.join().unwrap();
let v2 = t2.join().unwrap();

println!("{} + {} = {}", v1, v2, v1 + v2);

60/71

Shared Data

let mut data = vec![0];
let t1 = thread::spawn(|| { data.push(19); });

error: closure may outlive the current function, but it borrows `data`,
which is owned by the current function [E0373]

let t1 = thread::spawn(|| {
data.push(19);

});
note: `data` is borrowed here

data.push(19);
^~~~

help: to force the closure to take ownership of `data` (and any other
referenced variables), use the `move` keyword, as shown:

let t1 = thread::spawn(move || {
data.push(19);

}); 61/71

Shared Data (2) – Move data

Let’s move the data into the Thread.

let mut data = vec![0];
let t1 = thread::spawn(move || { data.push(19); });

62/71

Shared Data (3) – Outside Access

But now we can’t access it anymore..

let mut data = vec![0];
let t1 = thread::spawn(move || { data.push(19); });
t1.join().unwrap();
println!("Data: {:?}", data);

error: use of moved value: `data` [E0382]
println!("Data: {:?}", data);

^~~~
note: `data` moved into closure environment here because it has
type `collections::vec::Vec<i32>`, which is non-copyable

let t1 = thread::spawn(move || { data.push(19); });
^~~~~~~~~~~~~~~~~~~~~~~~~~

help: perhaps you meant to use `clone()`?

63/71

Shared Data (4) – Arcs

Atomic reference counting to the rescue!

let data = Arc::new(vec![0]);

let data2 = data.clone();
let t1 = thread::spawn(move || {

println!("Data2: {:?}", data2);
});

t1.join().unwrap();
println!("Data: {:?}", data);

Data2: [0]
Data: [0]

64/71

Shared Data (5) – Mutate?

let data = Arc::new(vec![0]);

let mut data2 = data.clone();
let t1 = thread::spawn(move || {

data2.push(1);
});

t1.join().unwrap();
println!("Data: {:?}", data);

error: cannot borrow immutable borrowed content as mutable
data2.push(1);
^~~~~

65/71

Shared Data (6) – Arc + Mutex

let data = Arc::new(Mutex::new(vec![0]));

let data2 = data.clone();
let t1 = thread::spawn(move || {

let mut guard = data2.lock().unwrap();
guard.push(1);

});

t1.join().unwrap();
println!("Data: {:?}", *data.lock().unwrap());

Data: [0, 1]

66/71

Shared Data (7) – Multiple Threads

Now we can also create multiple threads.
...
let data2 = data.clone();
let t1 = thread::spawn(move || {

let mut guard = data2.lock().unwrap();
guard.push(1);

});

let data3 = data.clone();
let t2 = thread::spawn(move || {

let mut guard = data3.lock().unwrap();
guard.push(2);

});
...

Data: [0, 1, 2]
67/71

Channels

Besides threading, you can also use channels:

use std::sync::mpsc::channel;

Signature:

fn channel<T>() -> (Sender<T>, Receiver<T>)

68/71

Rust Community

Projects Using Rust6

• Rust / Cargo itself :)
• Servo, the Parallel Browser Engine
https://servo.org

• Dropbox5

• Maidsafe — The New Decentralized Internet
http://maidsafe.net

• Parity — Next Generation Ethereum Client
https://ethcore.io/parity.html

5https://www.reddit.com/r/rust/comments/4adabk/the_epic_story_of_
dropboxs_exodus_from_the_amazon/
6https://www.rust-lang.org/friends.html

69/71

https://servo.org
http://maidsafe.net
https://ethcore.io/parity.html
https://www.reddit.com/r/rust/comments/4adabk/the_epic_story_of_dropboxs_exodus_from_the_amazon/
https://www.reddit.com/r/rust/comments/4adabk/the_epic_story_of_dropboxs_exodus_from_the_amazon/
https://www.rust-lang.org/friends.html

Rust Community Considered Helpful8

• The Rust Community is really friendly and welcoming
• You can get help on:

• Reddit https://www.reddit.com/r/rust/
• IRC7
• User Forum https://users.rust-lang.org/
• Stackoverflow http://stackoverflow.com/questions/tagged/rust

• Discussions about the language
• Forum https://internals.rust-lang.org/
• GitHub RFCs https://github.com/rust-lang/rfcs/

7https://client00.chat.mibbit.com/?server=irc.mozilla.org&channel=%23rust
8https://www.rust-lang.org/community.html

70/71

https://www.reddit.com/r/rust/
https://users.rust-lang.org/
http://stackoverflow.com/questions/tagged/rust
https://internals.rust-lang.org/
https://github.com/rust-lang/rfcs/
https://client00.chat.mibbit.com/?server=irc.mozilla.org&channel=%23rust
https://www.rust-lang.org/community.html

Coredump Rust Projects

• SpaceAPI9 implementation:
https://github.com/coredump-ch/spaceapi-rs
https://github.com/coredump-ch/spaceapi-server-rs
https://github.com/coredump-ch/status

• rpsrtsrs:
https://github.com/coredump-ch/rpsrtsrs

9http://spaceapi.net/

71/71

https://github.com/coredump-ch/spaceapi-rs
https://github.com/coredump-ch/spaceapi-server-rs
https://github.com/coredump-ch/status
https://github.com/coredump-ch/rpsrtsrs
http://spaceapi.net/

Thank you!
www.coredump.ch

