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What is Rust?



What is Rust?

«Rust is a systems programming language
that runs blazingly fast, prevents nearly all segfaults,
and guarantees thread safety.»
— www.rust-lang.org
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What’s wrong with systems languages?

• It’s difficult to write secure code.
• It’s very difficult to write multithreaded code.

These are the problems Rust was made to address.
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Quick Facts about Rust

(As of June 2016)

• Started by Mozilla employee Graydon Hoare
• First announced by Mozilla in 2010
• Community driven development
• First stable release: 1.0 in May 2015
• Latest stable release: 1.9
• More than 54’000 commits on Github
• Largest well-known project written in Rust: Servo1

1https://servo.org/
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Features

• Zero-cost abstractions
• Move semantics
• Guaranteed memory safety
• Threads without data races
• Trait based generics
• Pattern matching
• Type inference
• Minimal runtime, no GC
• Efficient C bindings
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Getting Started



Getting Started

Installing Rust



Rustup.rs

«rustup is an installer for
the systems programming language Rust»
— www.rustup.rs
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Rustup.rs

• Makes it easy to install different Rust versions
• Successor of multirust
• Written in Rust itself

• Installing is easy:
$ curl https://sh.rustup.rs -sSf | sh
Obviously you shouldn’t do that ;)

• Alternatively you can use https://play.rust-lang.org/
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Getting Started

Cargo, Rust’s Package Manager



Cargo

• Project and package manager
• Fetches and builds your project’s dependencies
• Invokes rustc or another build tool with the correct parameters to build your
project
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Cargo – Create a New Project

$ cargo new hello_world --bin
$ cd hello_world
$ tree
.
├── Cargo.toml
└── src

└── main.rs

1 directory, 2 files
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Cargo – Compile and Run

$ cargo build
Compiling hello_world v0.1.0 (file:///path/to/project/hello_world)

$ ./target/debug/hello_world
Hello, world!

$ cargo run
Compiling hello_world v0.1.0 (file:///path/to/project/hello_world)
Running `target/debug/hello_world`

Hello, world!
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Cargo – Dependencies

• Cargo generated a manifest for us:
[package]
name = "hello_world"
version = "0.1.0"
authors = ["Your Name <you@example.com>"]

• To add a dependency (from https://crates.io or github) we add it to
the manifest:
[dependencies]
time = "0.1"

• Cargo uses semantic versioning2 → we get the latest 0.1.x version

2http://semver.org/
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Cargo – Dependencies

$ cargo build
Updating registry `https://github.com/rust-lang/crates.io-index`

Downloading winapi v0.2.7
Compiling winapi v0.2.7
Compiling winapi-build v0.1.1
Compiling libc v0.2.11
Compiling kernel32-sys v0.2.2
Compiling time v0.1.35
Compiling hello_world v0.1.0 (file:///path/to/project/hello_world)
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Cargo – Testing

Rust has integrated unit testing3

#[test]
fn it_works() {

assert_eq!(1, 1);
}

#[test]
fn it_fails() {

assert_eq!(1, 2);
}

3https://doc.rust-lang.org/book/testing.html
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Cargo – Testing

$ cargo test

running 2 tests
test it_fails ... FAILED
test it_works ... ok

...

test result: FAILED. 1 passed; 1 failed; 0 ignored; 0 measured
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What is Type Safety?



A C Program

int main(int argc, char **argv) {
unsigned long a[1];
a[3] = 0x7ffff7b36cebUL;
return 0;

}

According to C99, undefined behavior. Output:

undef: Error: .netrc file is readable by others.
undef: Remove password or make file unreadable by others.
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Definitions

• If a program has been written so that no possible execution can exhibit
undefined behavior, we say that program is well defined.

• If a language’s type system ensures that every program is well defined, we
say that language is type safe.
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Type Safe Languages

• C and C++ are not type safe.
• Python is type safe:
>>> a = [0]
>>> a[3] = 0x7ffff7b36ceb
Traceback (most recent call last):
File "", line 1, in <module>
IndexError: list assignment index out of range
>>>

• Java, JavaScript, Ruby, and Haskell are also type safe.
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It’s Ironic.

• C and C++ are not type safe.
• Yet they are being used to implement the foundations of a system.
• Rust tries to resolve that tension
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Reading Rust



Example 1

fn gcd(mut n: u64, mut m: u64) -> u64 {
assert!(n != 0 && m != 0);
while m != 0 {

if m < n {
let t = m; m = n; n = t;

}
m = m % n;

}
n

}
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Example 2: Generics

fn min<T: Ord>(a: T, b: T) -> T {
if a <= b { a } else { b }

}

...

min(10i8, 20) == 10; // T is i8
min(10, 20u32) == 10; // T is u32
min("abc", "xyz") == "abc"; // Strings are Ord

min(10i32, "xyz"); // error: mismatched types
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Example 3: Generic Types

struct Range<Idx> {
start: Idx,
end: Idx,

}

...

Range { start: 200, end: 800 } // OK
Range { start: 1.3, end: 4.7 } // Also OK
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Example 4: Enumerations

enum Option<T> {
Some(T),
None

}
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Example 5: Application of Option<T>

fn safe_div(n: i32, d: i32) -> Option<i32> {
if d == 0 {

return None;
}
Some(n / d)

}
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Example 6: Matching an Option

match safe_div(num, denom) {
None => println!("No quotient."),
Some(v) => println!("Quotient is {}.", v)

}
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Example 7: Traits

trait HasArea {
fn area(&self) -> f64;

}
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Example 8: Trait Implementation

struct Circle {
x: f64,
y: f64,
radius: f64,

}

impl HasArea for Circle {
fn area(&self) -> f64 {

consts::PI * (self.radius * self.radius)
}

}
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Example 9: Default Methods

trait Validatable {
fn is_valid(&self) -> bool;
fn is_invalid(&self) -> bool {

!self.is_valid()
}

}
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Example 10: Trait Composition

trait Foo {
fn foo(&self);

}

trait FooBar : Foo {
fn foobar(&self);

}
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Memory Safety in Rust



Three Key Promises

To guarantee memory safety, Rust gives us three key promises:

• No null pointer dereferences

• There are no null pointers in safe Rust
• For error handling and control flow, Option and Result types are used.

• No dangling pointers
• The concepts of ”ownership”, ”borrowing” and ”lifetimes” prevent the use of
uninitialized or freed pointers

• No buffer overruns
• There’s no pointer arithmetic in safe Rust
• Arrays in Rust are not just pointers
• There are runtime bounds checks for indexing
• But most stdlib functions use iterators, which are checked at compile time
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Memory Safety in Rust

Promise 1: No null pointer dereferences



Promise 1: No null pointer dereferences

Null pointers are useful.
They can indicate the absence of optional information.
They can indicate failures.

But they can introduce severe bugs.

Rust separates the concept of a pointer from the concept of an
optional or error value.
Optional values are handled by Option<T>.
Error values are handled by Result<T, E>.
Many helpful tools to do error handling.
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You already saw Option<T>

fn safe_div(n: i32, d: i32) -> Option<i32> {
if d == 0 {

return None;
}
Some(n / d)

}

But what if you want to return an error, not just None?
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There’s also Result<T, E>

enum Result<T, E> {
Ok(T),
Err(E)

}
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How to use Results:

enum Error {
DivisionByZero,

}

fn safe_div(n: i32, d: i32) -> Result<i32, Error> {
if d == 0 {

return Err(Error::DivisionByZero);
}
Ok(n / d)

}

It’s good practice to define your own error types instead of using strings.

39/71



How to use Results:

enum Error {
DivisionByZero,

}

fn safe_div(n: i32, d: i32) -> Result<i32, Error> {
if d == 0 {

return Err(Error::DivisionByZero);
}
Ok(n / d)

}

It’s good practice to define your own error types instead of using strings.

39/71



But Result can get tedious...

fn do_calc() -> Result<i32, String> {
let a = match do_subcalc1() {

Ok(val) => val,
Err(msg) => return Err(msg),

}
let b = match do_subcalc2() {

Ok(val) => val,
Err(msg) => return Err(msg),

}
Ok(a + b)

}
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Ergonomic error handling with the try! macro

fn do_calc() -> Result<i32, String> {
let a = try!(do_subcalc1());
let b = try!(do_subcalc2());
Ok(a + b)

}

Note: Error signature must match!
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Mapping Errors

What if the signature does not match?

Then we can use map_err():

fn do_subcalc() -> Result<i32, String> { ... }
fn do_calc() -> Result<i32, Error> {

let res = do_subcalc();
let mapped = res.map_err(|msg| {

println!("Error: {}", msg);
Error::CalcFailed

});
let val = try!(mapped);
Ok(val + 1)

}
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Mapping Errors: A closer look

let mapped = res.map_err(|msg| Error::CalcFailed);

...is the same as...

let mapped = match res {
Ok(val) => Ok(val),
Err(msg) => Err(Error::CalcFailed),

}
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Memory Safety in Rust

Promise 2: No dangling pointers



Promise 2: No dangling pointers

• Rust programs never try to access a heap-allocated value after it has been
freed.

• By default, no garbage collection or reference counting involved!
• Everything is enforced at compile-time.
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Three Rules

Rule 1
Every value has a single owner at any given time.

Rule 2
You can borrow a reference to a value, so long as the reference doesn’t outlive
the value.

Rule 3
You can only modify a value when you have exclusive access to it.
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Ownership

• Variable bindings own their values
• A struct owns its fields
• An enum owns its values
• Every heap-allocated value has a single pointer that owns it
• All values are dropped when their owner is dropped
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Ownership: Scoping

If a value goes out of scope, the corresponding memory is automatically freed.

{
let s = "Chuchichästli".to_string();

} // s goes out of scope, memory is freed

47/71



Ownership: Move Semantics

Ownership is moved by default.

let s = "Chuchichästli".to_string();

// t1 takes ownership from s
let t1 = s;

// compile-time error: use of moved value s
let t2 = s;
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Ownership: Opt-in Implicit Copy Semantics

Types that implement the Copy marker trait (more about traits later) are copied
instead of moved. The stdlib implements Copy for all primitive types.

let pi = 3.1415926f32;
let foo = pi;
let bar = pi; // This is fine!
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Ownership: Opt-in Explicit Copy Semantics

If you prefer copies to be explicit, you can implement the Clone trait instead.

let s = "Chuchichästli".to_string();
let t1 = s.clone();
let t2 = s.clone();

50/71



Ownership: Deriving Copy / Clone

The compiler can automatically derive implementations of Copy and Clone for
us.

#[derive(Copy, Clone)]
struct Color {

r: u8,
g: u8,
b: u8

}
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Ownership: Function Parameters

But what about this?

fn print_loud(text: String) { println!("{}!!!!!", text); }
let s = "Hello, Cosin".to_string();
print_loud(s);
println!("{}", s);

error: use of moved value: `s`
println!(“{}”, s);

^
note: `s` moved here because it has type `collections::string::String`,
which is non-copyable
print_loud(s);

^
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Borrowing

Instead of moving a value, it can also be borrowed.

fn print_loud(text: &String) { println!("{}!!!!!", text); }
let s = "Hello, Cosin".to_string();
print_loud(&s);
println!("Original value was {}", s);

Many functions can borrow at the same time, because they cannot modify.
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Mutable Borrowing

If you need exclusive (=write) access, you can use mutable borrows.

fn make_loud(text: &mut String) { text.push_str("!!!!!"); };
let mut s = "Hello, Cosin".to_string();
make_loud(&mut s);
println!("New value is {}", s);

While borrow a mutable reference to a value, that refrence is the only way to
access that value at all.
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Borrowing prevents moving

While borrowed, a move must be prevented. Otherwise you might end up with a
dangling pointer.

let x = String::new();
let borrow = &x;
let y = x;

error: cannot move out of `x` because it is borrowed [E0505]
let y = x;

^
note: borrow of `x` occurs here

let borrow = &x;
^
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Lifetimes

What’s the problem here?

let borrow;
let x = String::new();
borrow = &x;

error: `x` does not live long enough
borrow = &x;

^
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Lifetimes

The lifetime of the borrow is longer than the lifetime of ‘x‘.

let borrow;
let x = String::new();
borrow = &x;

This can also be visualized differently:

{
let borrow;
{

let x = String::new();
borrow = &x;

}
}

Using lifetime checking, the compiler guarantees that there are no dangling
pointers.
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Memory Safety in Rust

Promise 3: No buffer overruns



No buffer overruns: Recap

• There’s no pointer arithmetic in safe Rust
• Arrays in Rust are not just pointers
• There are runtime bounds checks for indexing
• But most stdlib functions use iterators, which are checked at compile time
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Multithreaded Programming



We’ll make this short

• The Rust compiler does not know about concurrency
• Everything works based on the three rules4

• We’ll step through an example

4Slide 45
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Threads

let t1 = std::thread::spawn(|| { return 23; });
let t2 = std::thread::spawn(|| { return 19; });

let v1 = t1.join().unwrap();
let v2 = t2.join().unwrap();

println!("{} + {} = {}", v1, v2, v1 + v2);
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Shared Data

let mut data = vec![0];
let t1 = thread::spawn(|| { data.push(19); });

error: closure may outlive the current function, but it borrows `data`,
which is owned by the current function [E0373]

let t1 = thread::spawn(|| {
data.push(19);

});
note: `data` is borrowed here

data.push(19);
^~~~

help: to force the closure to take ownership of `data` (and any other
referenced variables), use the `move` keyword, as shown:

let t1 = thread::spawn(move || {
data.push(19);
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Shared Data (2) – Move data

Let’s move the data into the Thread.

let mut data = vec![0];
let t1 = thread::spawn(move || { data.push(19); });
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Shared Data (3) – Outside Access

But now we can’t access it anymore..

let mut data = vec![0];
let t1 = thread::spawn(move || { data.push(19); });
t1.join().unwrap();
println!("Data: {:?}", data);

error: use of moved value: `data` [E0382]
println!("Data: {:?}", data);

^~~~
note: `data` moved into closure environment here because it has
type `collections::vec::Vec<i32>`, which is non-copyable

let t1 = thread::spawn(move || { data.push(19); });
^~~~~~~~~~~~~~~~~~~~~~~~~~

help: perhaps you meant to use `clone()`?
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Shared Data (4) – Arcs

Atomic reference counting to the rescue!

let data = Arc::new(vec![0]);

let data2 = data.clone();
let t1 = thread::spawn(move || {

println!("Data2: {:?}", data2);
});

t1.join().unwrap();
println!("Data: {:?}", data);

Data2: [0]
Data: [0]
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Shared Data (5) – Mutate?

let data = Arc::new(vec![0]);

let mut data2 = data.clone();
let t1 = thread::spawn(move || {

data2.push(1);
});

t1.join().unwrap();
println!("Data: {:?}", data);

error: cannot borrow immutable borrowed content as mutable
data2.push(1);
^~~~~
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Shared Data (6) – Arc + Mutex

let data = Arc::new(Mutex::new(vec![0]));

let data2 = data.clone();
let t1 = thread::spawn(move || {

let mut guard = data2.lock().unwrap();
guard.push(1);

});

t1.join().unwrap();
println!("Data: {:?}", *data.lock().unwrap());

Data: [0, 1]
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Shared Data (7) – Multiple Threads

Now we can also create multiple threads.
...
let data2 = data.clone();
let t1 = thread::spawn(move || {

let mut guard = data2.lock().unwrap();
guard.push(1);

});

let data3 = data.clone();
let t2 = thread::spawn(move || {

let mut guard = data3.lock().unwrap();
guard.push(2);

});
...

Data: [0, 1, 2]
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Channels

Besides threading, you can also use channels:

use std::sync::mpsc::channel;

Signature:

fn channel<T>() -> (Sender<T>, Receiver<T>)
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Rust Community



Projects Using Rust6

• Rust / Cargo itself :)
• Servo, the Parallel Browser Engine
https://servo.org

• Dropbox5

• Maidsafe — The New Decentralized Internet
http://maidsafe.net

• Parity — Next Generation Ethereum Client
https://ethcore.io/parity.html

5https://www.reddit.com/r/rust/comments/4adabk/the_epic_story_of_
dropboxs_exodus_from_the_amazon/
6https://www.rust-lang.org/friends.html
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Rust Community Considered Helpful8

• The Rust Community is really friendly and welcoming
• You can get help on:

• Reddit https://www.reddit.com/r/rust/
• IRC7
• User Forum https://users.rust-lang.org/
• Stackoverflow http://stackoverflow.com/questions/tagged/rust

• Discussions about the language
• Forum https://internals.rust-lang.org/
• GitHub RFCs https://github.com/rust-lang/rfcs/

7https://client00.chat.mibbit.com/?server=irc.mozilla.org&channel=%23rust
8https://www.rust-lang.org/community.html
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Coredump Rust Projects

• SpaceAPI9 implementation:
https://github.com/coredump-ch/spaceapi-rs
https://github.com/coredump-ch/spaceapi-server-rs
https://github.com/coredump-ch/status

• rpsrtsrs:
https://github.com/coredump-ch/rpsrtsrs

9http://spaceapi.net/
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Thank you!
www.coredump.ch


